

Simulation of 802.11 PHY/MAC: the Quest for Accuracy and Efficiency

Michele Segata Renato Lo Cigno

UNIVERSITY OF TRENTO - Italy

Department of Information Engineering and Computer Science

9th Annual Conference on Wireless On-demand Network Systems and Services

January 9-11, 2012, Courmayeur, Italy

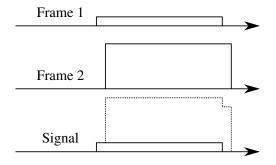
Reasons Of This Work

- Need of realistic and scalable simulations for VANETs
- ns-3 choices:
 - ns-3 default PHY layer (YANS)
 - Stochastic
 - Scalable
 - Lack of realism
 - PhySim implementation by DSN Research Group (KIT)¹
 - Emulative
 - Not scalable
 - Highly realistic
- Other popular simulators:
 - ns-2
 - Omnet++
- None consider shadowing due to obstacles
- Goal: provide a scalable model accurate enough for VANET simulations

ns-3 Models' Description

YANS - Stochastic model

Chunk based with BER/PER approach


Frame received with probability

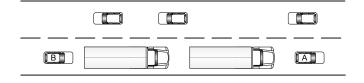
$$P_r(f) = \prod_{c_i \in f} 1 - P_e(c_i).$$

YANS - Stochastic model

- Optimistic (recently, error rate model updated by NIST)
- Preamble / header decoding phases missing
- No capture effects
- Fading model (i.e., Nakagami) does not consider relative speed

PhySim - Emulative model

- Emulative DSP oriented approach
- Bits -> Scrambling -> Conv. encoding -> Interleaving -> Modulation -> IFFT -> GI -> Samples
- Signal represented as complex time samples
- Channel represented through tapped delay line
- TDL setup using data from real traces for realistic fading
- Drawback: traces are relative to a fixed scenario


PhySim - Emulative model

- Reception = reverse send procedure:
 - Try to detect preamble and estimate freq. offset
 - Try to decode the PLCP header
 - Try to decode the payload
- Natural reproduction of real phenomena
- High realism
- Huge computational load

A note on shadowing

- Shadowing: additional attenuation caused by obstacles
- Usually modelled using random fluctuations of signal energy
- What about this case?

 A single truck can cause 20 dB of attenuation (Meireles et. al., "Experimental study on the impact of vehicular obstructions in VANETs", VNC 2010)

Proposed Approach

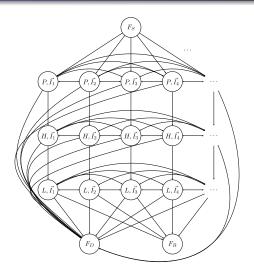
Idea: Markov Decision Process

- Create a MDP for the PHY receive procedure
- Tune it with results obtained through PhySim
- Important parameters:
 - Current reception phase:

$$R_P = \{ Preamble, Header, payLoad \}$$

• Vector of interfering frames \vec{l}

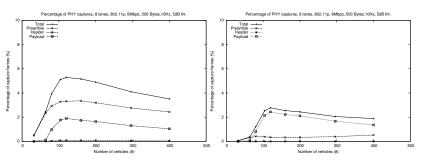
$$\mathcal{F} \in \vec{I} = (\mathit{t_s}, \mathit{t_e}, \mathit{PW}, \mathit{B}, \Delta_\mathit{f}, \mathit{MC}, \Delta_\mathit{v})$$


- Frame under reception (described as any other frame \mathcal{F})
- The state S of the MDP is

$$S = \{F_S; F_R; F_D; (R_P, \vec{l}), E\}$$

where F_S = initial state, F_R/F_D = absorbing states for receive/discard decision, E = environment

MDP Graphical Representation


First implementation

Features:

- PHY state machine with captures
- Simple environment description (cars and trucks) for shadowing effects
- Uses the NIST BER model

Fraction of frames generating a capture, 5 dB thr.

ED thr. = -104 dBm, Preamble BUSY over -65 dBm

ED thr. = -85 dBm, Preamble BUSY over -85 dBm

Impact of trucks on frame reception

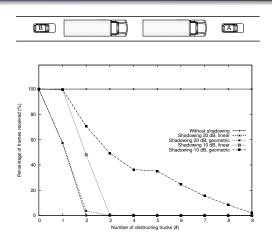


Figure: Payload 500 bytes, data rate 6 Mbps

Impact of relative speed

Work in progress. Can take 1 hour to process 100-200 frames

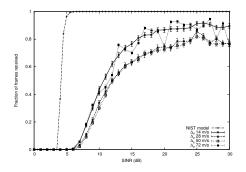
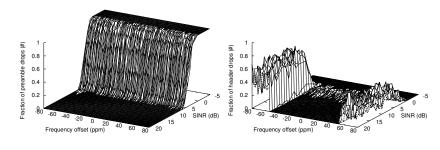
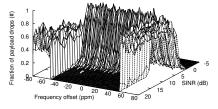


Figure: Payload 500 bytes, data rate 6 Mbps

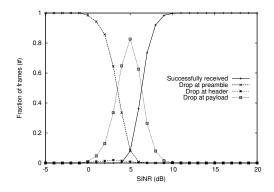
Conclusion

- Currently available stochastic models are not precise enough for VANETs (PHY, fading, shadowing)
- A DSP-like approach harms scalability, but is useful for understanding and model derivation
- An MDP-like approach with enough information can improve precision


That's all! Thanks for listening! Questions?


Contacts:

{msegata, locigno}@disi.unitn.it


Δ_f effects on preamble, header and payload

PHY layer behavior – Noise floor only

